

Chemistry A level transition - baseline assessment.

40 marks

All data is given on this paper, you will not need a periodic table

Answer all questions.

1. Here is part of a periodic table, use it to answer the following questions

I	10.8	12.0	14.0	16.0	19.0	20.2
	₅ B	°C	,N	ူဝ	₉ F	, ₁₀ Ne
ı	boron	carbon	nitrogen	oxygen	fluorine	neon
I	27.0	28.1	31.0	32.1	35.5	39.9
	13AI aluminium	Si silicon	P phosphorus	16 Sulphur	17 CI	18Ar argon

a. Which is the correct electron configuration for a nitrogen atom, circle the correct answer

[1]

 $1s^22p^5$

 $1s^12p^6$

 $1s^22s^22p^3$

 $1s^22s^5$

 $1s^22s^22p^63s^23p^2$

b. Which is the correct electron configuration for a chlorine atom, circle the correct answer

[1]

 $1s^2 2s^8 2p^7$

1s²2s²2p⁸2d⁵

1s²2s²2p⁶3d⁷

 $1s^22s^22p^63p^7$

 $1s^22s^22p^63s^23p^5$

c. Which is the correct electron configuration for an aluminium **ion**, Al³⁺? Circle the correct answer [1]

1s²2s²2p⁶

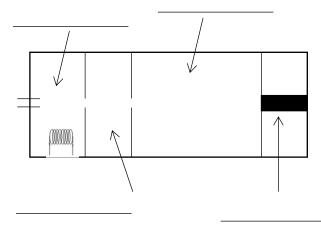
 $1s^22s^22p^63s^23p^3$

 $1s^22s^22p^63s^2$

 $1s^22s^22p^62d^1$

2. Draw a dot and cross diagram to show the bonding in a molecule of water, H_2O . Atomic numbers: H = 1, O = 8

[2]


3. A time of flight mass spectrometer has 4 main stages. put the correct stage in the diagram below:

Drift region

Ionisation

Detector

Acceleration

[4]

4. A mass spectrometer was used to analyse a sample of chlorine; the results of the analysis are as follows:

isotope mass	% of sample
Cl-35	75.53
Cl-37	24.47

Calculate the accurate atomic mass of chlorine. Give your answer to 3 decimal places .	[3]
---	-----

mass:

5. Give the oxidation state of the underlined atom in the following chemicals.

Useful information:
$$H = +1$$
, $K = +1$, $Na = +1$, $Mg = +2$, $O = -2$, $Cl = -1$

[7]

- a) <u>C</u>O₂
- b) <u>S</u>O₃
- c) H₂SO₄
- d) AlCl₃

- e) <u>Cr</u>₂O₃
- f) Na<u>N</u>O₃
- g) <u>V</u>Cl₄

a)
$$C_3H_8 + ___ O_2 \rightarrow ___ CO_2 + ___ H_2O$$

[3]

b) ___ HCl + Mg(OH)₂
$$\rightarrow$$
 MgCl₂ + ___ H₂O

[2]

c) Na₂CO₃ +
$$\underline{\hspace{1cm}}$$
 HCl \rightarrow $\underline{\hspace{1cm}}$ NaCl + $\underline{\hspace{1cm}}$ H₂O + CO₂

[3]

7. Calculate the relative formula masses of the following:

Atomic masses: H = 1, O = 16, S = 32.1, C = 12, Ca = 40.1, Na = 23, Cl = 35.5, Zn = 65.4

- a) CaCl₂
- b) H₂CO₃
- c) Na₂SO₄
- d) C₃H₇OH
- e) $Zn(NO_3)_2$

[5]

8. A student carried out a reaction with this molecule:

a. What is the name of this molecule? _____ [2]

sample of vinegar. He used a pipette to measure exactly 25.0cm3 of vinegar into a flask, added an indicator and titrated it with a 1.00 mol dm⁻³ solution of sodium hydroxide (NaOH). The reaction is: CH₃COOH + NaOH → CH₃COONa + H₂O The student found that his average titration was 27.50cm³ c = n/vc = concentration (mol dm $^{-3}$), n = number of moles, v = volume (dm 3) n = number of moles, m = mass in grams, Rfm = formula mass n = m/Rfm $1dm^3 = 1000 \text{ cm}^3$ a. Using the chemical equation, how many moles of sodium hydroxide will react with 1 mole of ethanoic acid? moles [1] b. How many moles of sodium hydroxide are in 27.50cm³ of 1.00 moldm⁻³ sodium hydroxide? _moles [2] c. How many moles of ethanoic acid are in 25.0cm³ of the vinegar sample? moles [1] d. How many moles of ethanoic acid are in 1dm³ of vinegar? [1] moles e. Ethanoic acid has a formula mass of 48. What mass of ethanoic acid is present in 1dm³ of vinegar? [2] g

9. Vinegar is a solution of ethanoic acid (CH₃COOH) in water. A student carried out a titration of a